Abstract
In this paper, the problem of the order of approximation for the multivariate sampling Kantorovich operators is studied. The cases of uniform approximation for uniformly continuous and bounded functions/signals belonging to Lipschitz classes and the case of the modular approximation for functions in Orlicz spaces are considered. In the latter context, Lipschitz classes of Zygmund-type which take into account of the modular functional involved are introduced. Applications to $L^p(\R^n)$, interpolation and exponential spaces can be deduced from the general theory formulated in the setting of Orlicz spaces. The special cases of multivariate sampling Kantorovich operators based on kernels of the product type and constructed by means of Fej\'er's and B-spline kernels have been studied in details.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.