Abstract

Triamterene (TA), a potassium-sparing diuretic, is extensively metabolized by hydroxylation in 4'-position and subsequent conjugation by cytosolic sulfotransferases. To identify the cytochrome P450 enzyme(s) catalyzing hydroxylation of triamterene (the rate-limiting step in the formation of the sulfate ester (STA)), in vitro incubation studies were performed with human liver microsomes. Initial rates of TA hydroxylation (0 - 300 microM) were determined during a ten-minute-incubation period with liver microsomes of two donors. The role of individual CYP enzymes was determined by pre-incubation with selective inhibitors/alternative substrates. Vice versa, the effect of TA (0 - 500 microM) on 3-demethylation of caffeine (0 - 1,000 microM) was assessed. Metabolite concentrations were estimated by reversed-phase HPLC methods. TA Km values without inhibitors were 60 and 142 microM, Vmax was 177 and 220 pmol/min/mg protein, respectively. Mean inhibitor induced changes of 4'-hydroxy-TA formation were as follows: Furafylline 25 microM (CYP1A2), complete inhibition (-100%); omeprazole 250 microM (CYP1A2 inhibitor/CYP2C 19 substrate), -30%; coumarin 25 microM (CYP2A6), -11%; quinidine 25 microM (CYP2D6), -9%; ketoconazole 25 microM (CYP3A), -18%; and erythromycin 250 microM (CYP3A), -8%. In the reverse inhibition studies, TA competitively inhibited caffeine 3-demethylation with Ki values of 65 and 111 microM, respectively. 4'-hydroxylation of TA in humans appears to be mediated exclusively by CYP1A2. Inhibition or induction of CYP1A2 will change the time course of both TA and its active phase-II metabolite. The net pharmacodynamic effect of such changes is difficult to predict and needs to be evaluated in clinical studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call