Abstract

The cooling rate for cavity mediated laser cooling scales as the Lamb-Dicke parameter eta squared. A proper analysis of the cooling process hence needs to take terms up to eta^2 in the system dynamics into account. In this paper, we present such an analysis for a standard scenario of cavity mediated laser cooling with eta << 1. Our results confirm that there are many similarities between ordinary and cavity mediated laser cooling. However, for a weakly confined particle inside a strongly coupled cavity, which is the most interesting case for the cooling of molecules, numerical results indicate that even more detailed calculations are needed to model the cooling process accurately.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.