Abstract

We propose a rate equation approach to compute two vertex correlations in scale-free growing network models based on the preferential attachment mechanism. The formalism, based on previous work of Szabo [Phys. Rev. E. 67, 056102 (2002)] for the clustering spectrum, measuring three vertex correlations, is based on a rate equation in the continuous degree and time approximation for the average degree of the nearest neighbors of vertices of degree k , with an appropriate boundary condition. We study the properties of both two and three vertex correlations for linear preferential attachment models, and also for a model yielding a large clustering coefficient. The expressions obtained are checked by means of extensive numerical simulations. The rate equation proposed can be generalized to more sophisticated growing network models, and also extended to deal with related correlation measures. As an example, we consider the case of a recently proposed model of weighted networks, for which we are able to compute a weighted two vertex correlation function, taking into account the strength of the interactions between connected vertices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.