Abstract

The thermal-mechanical properties of the materials currently used in packaging are being reexamined as the electronic packaging industry moves towards chip scale packages and wafer scale packages. The rate-dependent transition of elastic modulus and viscosity from thermal softening to thermal hardening with rising temperature, which does not involve any phase change, has been observed in certain elastomers. An explanation about this interesting phenomenon is given based on thermodynamic considerations. A theoretical analysis is performed to show the limitation of existing viscoelastic models in predicting the transition. It appears that macroscopic material properties should be reexamined based on the physics behind the interaction between ordinary elasticity and entropic elasticity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.