Abstract

A major benefit of additive manufacturing technologies is precise control over structural topologies and material properties, which allows to tailor, for instance, energy absorption and dissipation. While vat photopolymerization is generally restricted to a single material, grayscale masked stereolithography (gMSLA) allows to customize material behavior by grading the light intensity within a structure. This study investigates the impact and opportunities of grayscale grading strategies on the rate-dependent mechanical behavior of structures fabricated by gMSLA. Considering the viscoelastic nature of polymers, rate-dependent energy dissipation is explored, introducing a parametric linear viscoelastic constitutive model for varying grayscales. The investigation includes the comprehensive characterization of mechanical properties, numerical finite element simulation, validation through experimental procedures, and exploration of dissipation energy under different strain rates. In this way, a rational function successfully determines the critical strain rate at which the maximum dissipation occurs. Overall, the research offers a comprehensive investigation of the mechanical dissipation behavior of graded 3D printed structures, laying the foundation for further studies and advancements aimed at optimizing these structures for enhanced energy absorption capabilities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call