Abstract

The relaxation behavior under tensile loading of a superelastic NiTi alloy was investigated after hydrogen charging with respect to aging from one to 77 days in air at room temperature. The specimens were immersed for 3 h in a 0.9 % NaCl aqueous solution and then relaxed with an imposed strain of 4.8 %—which results in half of the martensite transformation—for different strain rates of 10−4, 10−3, and 5 × 10−3 s−1. For the non-charged specimens, the relaxed stress at the beginning exhibited a temporary dependence on the strain rates and then reached the same equilibrium stress after 2.5 h. After hydrogen charging, this equilibrium stress did not vary for the as-charged specimen. Nevertheless, the greater the aging period is the greater the equilibrium stress is. This behavior can be attributed to the diffusion of hydrogen into the entire specimen, which hinders the relaxation mechanism of the martensite bands.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.