Abstract
The strain rate during shearing has been shown in experimental studies to strongly affect the mechanical behaviour of soil. For saturated soil, sufficient knowledge has been obtained to achieve equilibrium conditions for the pore water pressure. Nevertheless, little is known about unsaturated soil. Therefore, this study used a hollow cylindrical torsional shear apparatus to investigate the rate dependence on the deformation and strength properties of unsaturated soil. First, unsaturated specimens were anisotropically consolidated with different directions of major principal stress to assess the rate dependence of the anisotropic behaviour. Then, the shear stress was removed to produce an isotropic stress state. Shearing was applied using the specimens to evaluate the strain rate effects on the mechanical properties of unsaturated cohesive soil. The results indicate that the secant shear modulus increased with the strain rate in both constant suction (CS) and constant water content (CW) conditions. The shear strength did not change with the strain rate under a CW condition, but it decreased with the strain rate under a CS condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.