Abstract

AbstractThe rate constants of the gas‐phase reaction of OH radicals with trans‐2‐hexenal, trans‐2‐octenal, and trans‐2‐nonenal were determined at 298 ± 2 K and atmospheric pressure using the relative rate technique. Two reference compounds were selected for each rate constant determination. The relative rates of OH + trans‐2‐hexenal versus OH + 2‐methyl‐2‐butene and β‐pinene were 0.452 ± 0.054 and 0.530 ± 0.036, respectively. These results yielded an average rate constant for OH + trans‐2‐hexenal of (39.3 ± 1.7) × 10−12 cm3 molecule−1 s−1. The relative rates of OH+trans‐2‐octenal versus the OH reaction with butanal and β‐pinene were 1.65 ± 0.08 and 0.527 ± 0.032, yielding an average rate constant for OH + trans‐2‐octenal of (40.5 ± 2.5) × 10−12 cm3 molecule−1 s−1. The relative rates of OH+trans‐2‐nonenal versus OH+ butanal and OH + trans‐2‐hexenal were 1.77 ± 0.08 and 1.09 ± 0.06, resulting in an average rate constant for OH + trans‐2‐nonenal of (43.5 ± 3.0) × 10−12 cm3 molecule−1 s−1. In all cases, the errors represent 2σ (95% confidential level) and the calculated rate constants do not include the error associated with the rate constant of the OH reaction with the reference compounds. The rate constants for the hydroxyl radical reactions of a series of trans‐2‐aldehydes were compared with the values estimated using the structure activity relationship. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 483–489, 2009

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call