Abstract

Rate constants for hydrogen atom transfer reactions of the water, deuterium oxide, and methanol complexes of bis(cyclopentadienyl)titanium(III) chloride with the secondary alkyl radical 1-cyclobutyldodecyl (2) were determined using indirect kinetic methods. The rate constant for reaction of Cp2Ti(III)Cl-H2O in THF at ambient temperature was 1.0 x 10(5) M(-1) s(-1), and the kinetic isotope effect was kH/kD = 4.4. In benzene containing 0.95 M methanol, the rate constant for reaction of the Cp2Ti(III)Cl-MeOH at ambient temperature was 7.5 x 10(4) M(-1) s(-1). An Arrhenius function for reaction of the Cp2Ti(III)Cl-H2O complex in THF was log k = 9.1 - 5.5/2.3 RT (kcal/mol). The entropic term for reaction of Cp2Ti(III)Cl-H2O was normal, whereas the entropic term previously found for reaction of the Et3B-H2O complex with radical 2 was unusually small (Jin, J.; Newcomb, M. J. Org. Chem. 2007, 72, 5098).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call