Abstract

Ketones are emitted directly to the atmosphere, and their sources were discussed in detail in chapter I. In the U.K. acetone and butanone comprise about 7% and 5%, respectively, of the total anthropogenic emissions of oxygenated compounds, and 1.6% and 1.1%, respectively, of the total anthropogenic emissions of nonmethane volatile organic compounds. Ketone emissions from solvents (both industrial and personal) are substantial; emissions from both gasoline- and diesel-fueled vehicles also contribute. Ketones are also formed extensively in the atmosphere in the oxidation of other compounds. Acetone, for example is formed in the OH-initiated oxidation of propane, iso-butane, iso-pentane, and neopentane and from a number of higher hydrocarbons. It is also formed in the oxidation of terpenes. The distribution, sources, and sinks of acetone in the atmosphere have been analyzed by Simpson et al. (1994). Methyl vinyl ketone is an important first generation product in the OH-initiated oxidation of isoprene. In this chapter, we discuss the rate coefficients and the mechanisms of oxidation of ketones. The classes covered include alkanones, hydroxyketones, diketones, unsaturated ketones, ketenes, cyclic ketones, ketones derived from biogenic compounds, and halogen-substituted ketones. Photolysis is a major atmospheric process for many ketones, and will be discussed in chapter IX. The major bimolecular reactions removing ketones from the atmosphere are with OH. Although less important than the OH reactions, reactions with Cl have been studied quite extensively. Other than for unsaturated ketones, reactions with NO3 and O3 are unimportant in tropospheric chemistry and have been studied little. The carbonyl group deactivates the α-position with respect to reaction with OH, but activates the β-position, and possibly more distant sites as well. The net result is that the overall rate coefficient of an alkanone generally exceeds that of the equivalent alkane. The temperature dependences of the rate coefficients can be quite complex, with acetone and possibly butanone showing a minimum in the rate coefficient at ∼250 K, while the higher alkanones show negative temperature dependences across the more limited temperature ranges that have been investigated. The most likely explanation of this behavior is the formation of a pre-reaction, hydrogen-bonded complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.