Abstract

The hydrogen abstraction reaction F+CH3OH has two possible reaction pathways: HF+CH3O and HF+CH2OH. Despite the absence of intrinsic barriers for both channels, the former has a branching ratio comparable to the latter, which is far from the statistical limit of 0.25 (one out of four available H atoms). Furthermore, the measured branching ratio of the two abstraction channels spans a large range and is not quantitatively reproduced by previous theoretical predictions based on the transition-state theory with the stationary point information calculated at the levels of Møller-Plesset perturbation theory and G2. This work reports a theoretical investigation on the kinetics and the associated branching ratio of the two competing channels of the title reaction using a quasi-classical trajectory approach on an accurate full-dimensional potential energy surface (PES) fitted by the permutation invariant polynomial-neural network approach to ca. 1.21 × 105 points calculated at the explicitly correlated (F12a) version of coupled cluster singles doubles and perturbative triples (CCSD(T)) level with the aug-cc-pVDZ basis set. The calculated room temperature rate coefficient and branching ratio of the HF+CH3O channel are in good agreement with the available experimental data. Furthermore, our theory predicts that rate coefficients have a slightly negative temperature dependence, consistent with barrierless nature of the reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.