Abstract

Site-specific recombination catalysed by Tn 3resolvase requires the formation of an intermediate synaptic complex containing two resrecombination sites and several resolvase subunits. Synaptic complexes were observed directly by chemical crosslinking of resolvase subunits followed by agarose gel electrophoresis. The highest yield of synaptic complex was from a "standard" substrate, a supercoiled plasmid with ressites in direct repeat, but complexes were also made between sites in inverted repeat, or in nicked or linear molecules, or in separate molecules. The substrate selectivity for synapsis is less stringent than for recombination; thus recombination selectivity is dependent on steps after synapsis. The stability of the synapse after its formation might be a key factor, since unproductive synapses are less stable than productive ones. In a standard substrate, synapsis is fast relative to the rate of recombination. Crosslinking in active reaction mixtures yields synaptic complexes derived from both the substrate and the catenane recombination product. Although catalysis of strand exchange is at binding site I of res, a pair of isolated site I's do not synapse, whereas a synaptic complex is formed from a plasmid carrying two copies of resbinding sites II and III. Our data are consistent with a model in which the formation of the synaptic intermediate is driven, and its structure defined, by the initial interaction of these accessory sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.