Abstract

The formation of surface-bound hydrogen from one proton and one electron plays an enabling role in renewable hydrogen production. Quantifying the surface-bound hydrogen formation, however, requires decoupling the delicate interplay of numerous processes. We study cyclic voltammetry (CV) at fast scan rates to characterize the rate constant for the surface-bound hydrogen formation (also known as underpotential deposition hydrogen, UPD Had). We find that the formation of Had on Pt(111) single crystals is ∼100× faster in acid than in base. Reaction-order analysis indicates that the formation of Had occurs as a standard proton-coupled electron transfer (PCET) reaction in acid, whereas in base, it displays a pH-independent rate constant, indicating the presence of a chemical step such as the reorganization of interfacial water. Our results provide a methodology for quantifying the interfacial PCET kinetics and reveal the mechanistic nature of the UPD Had formation as the reason the hydrogen evolution electrocatalysis on Pt is faster in acid than in base.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call