Abstract
The formation of surface-bound hydrogen from one proton and one electron plays an enabling role in renewable hydrogen production. Quantifying the surface-bound hydrogen formation, however, requires decoupling the delicate interplay of numerous processes. We study cyclic voltammetry (CV) at fast scan rates to characterize the rate constant for the surface-bound hydrogen formation (also known as underpotential deposition hydrogen, UPD Had). We find that the formation of Had on Pt(111) single crystals is ∼100× faster in acid than in base. Reaction-order analysis indicates that the formation of Had occurs as a standard proton-coupled electron transfer (PCET) reaction in acid, whereas in base, it displays a pH-independent rate constant, indicating the presence of a chemical step such as the reorganization of interfacial water. Our results provide a methodology for quantifying the interfacial PCET kinetics and reveal the mechanistic nature of the UPD Had formation as the reason the hydrogen evolution electrocatalysis on Pt is faster in acid than in base.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.