Abstract

Dissolved organic carbon (DOC) release by seaweeds (marine macroalgae) is a critical component of the coastal ocean biogeochemical carbon cycle but is an aspect of seaweed carbon physiology that we know relatively little about. Seaweed-derived DOC is found throughout coastal ecosystems and supports multiple food web linkages. Here, we discuss the mechanisms of DOC release by seaweeds and group them into passive (leakage, requires no energy) and active release (exudation, requires energy) with particular focus on the photosynthetic "overflow" hypothesis. The release of DOC from seaweeds was first studied in the 1960s, but subsequent studies use a range of units hindering evaluation: we convert published values to a common unit (μmol C · g DW-1 · h-1 ) allowing comparisons between seaweed phyla, functional groups, biogeographic region, and an assessment of the environmental regulation of DOC production. The range of DOC release rates by seaweeds from each phylum under ambient environmental conditions was 0-266.44μmol C · g DW-1 · h-1 (Chlorophyta), 0-89.92μmol C · g DW-1 · h-1 (Ochrophyta), and 0-41.28μmol C · g DW-1 · h-1 (Rhodophyta). DOC release rates increased under environmental factors such as desiccation, high irradiance, non-optimal temperatures, altered salinity, and elevated dissolved carbon dioxide (CO2 ) concentrations. Importantly, DOC release was highest by seaweeds that were desiccated (<90 times greater DOC release compared to ambient). We discuss the impact of future ocean scenarios (ocean acidification, seawater warming, altered irradiance) on DOC release rates by seaweeds, the role of seaweed-derived DOC in carbon sequestration models, and how they inform future research directions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call