Abstract

This paper considers incremental redundancy hybrid ARQ (HARQ) transmission over independent block-fading channels. The transmitter, having no knowledge of the instantaneous channel state information (CSI) can or - allocate the transmission rate knowing the statistics of the channel, or - adapt the transmissions rates using the outdated CSI, i.e., the one experienced by the receiver in the past transmissions that resulted in a packet decoding failure. Aiming at throughput maximization problems under constraint on the outage probability, we show how to optimize the rate-adaptation and rate-allocation policies using dynamic programming framework. Numerical examples obtained in a Rayleigh-fading channel show that rate adaptation provides notable gains over a rate allocation and non-adaptive HARQ, and, for high SNR, only a few transmissions are necessary to approach closely the ergodic capacity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.