Abstract
In this paper we analyze Generalized Method of Moments (GMM) estimators for time series models as advocated by Hansen and Singleton. It is well known that these estimators achieve efficiency bounds if the number of lagged observations in the instrument set goes to infinity. However, to this date no data dependent way of selecting the number of instruments in a finite sample is available. This paper derives an asymptotic mean squared error (MSE) approximation for the GMM estimator. The optimal number of instruments is selected by minimizing a criterion based on the MSE approximation. It is shown that the fully feasible version of the GMM estimator is higher order adaptive. In addition a new version of the GMM estimator based on kernel weighted moment conditions is proposed. The kernel weights are selected in a data-dependent way. Expressions for the asymptotic bias of kernel weighted and standard GMM estimators are obtained. It is shown that standard GMM procedures have a larger asymptotic bias and MSE than optimal kernel weighted GMM. A bias correction for both standard and kernel weighted GMM estimators is proposed. It is shown that the bias corrected version achieves a faster rate of convergence of the higher order terms of the MSE than the uncorrected estimator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.