Abstract

We show that application of boundary constraints generates unusual folding behaviors in responsive (swellable) helical bilayer strips. Unlike the smooth folding trajectories typical of free helical bilayers, the boundary-constrained bilayers exhibit intermittent folding behaviors characterized by rapid, steplike movements. We experimentally study bilayer strips as they swell and fold, and we propose a simple model to explain the emergence of ratchetlike behavior. Experiments and model predictions are then compared to simulations, which enable calculation of elastic energy during swelling. We investigate the dependence of this steplike behavior as a function of elastic boundary condition strength, strip length, and strip shape; interestingly, "V-shape" strips with the same boundary conditions fold smoothly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.