Abstract

We consider the motion of self-propelling Brownian particles in two-dimensional periodically corrugated channels. The point-size swimmers propel themselves in a direction which fluctuates by Brownian rotation; in addition, they undergo Brownian motion. The impermeability of the channel boundaries in conjunction with an asymmetry of the unit-cell geometry enables ratcheting, where a nonzero particle current is animated along the channel. This effect is studied here in the continuum limit using a diffusion-advection description of the probability density in a four-dimensional position-orientation space. Specifically, the mean particle velocity is calculated using macrotransport (generalized Taylor-dispersion) theory. This description reveals that the ratcheting mechanism is indirect: swimming gives rise to a biased spatial particle distribution which in turn results in a purely diffusive net current. For a slowly varying channel geometry, the dependence of this current upon the channel geometry and fluid-particle parameters is studied via a long-wave approximation over a reduced two-dimensional space. This allows for a straightforward seminumerical solution. In the limit where both rotational diffusion and swimming are strong, we find an asymptotic approximation to the particle current, scaling inversely with the square of the swimming Péclet number. For a given swimmer-fluid system, this limit is physically realized with increasing unit-cell size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.