Abstract

AbstractThe present study predicts ratcheting response of SS304 tubular stainless steel samples using kinematic hardening rules of Ohno–Wang (O–W), Chen‐Jiao‐Kim (C–J–K) and a newly modified hardening rule under various stress‐controlled, and combined stress‐ and strain‐controlled histories. The O–W hardening rule was developed based on the critical state of dynamic recovery of backstress. The C–J–K hardening rule further developed the O–W rule to include the effect of non‐proportionality in ratcheting assessment of materials. The modified rule involved terms , and in the dynamic recovery of the Ahmadzadeh–Varvani (A–V) model to respectively track different directions under multiaxial loading, account for non‐proportionality and prevent plastic shakedown of ratcheting data over multiaxial stress cycles.The O–W model persistently overestimated ratcheting strain over the multiaxial loading paths. The C–J–K model further lowered this overprediction and improved the predicted ratcheting curves. The predicted ratcheting curves based on the modified model closely agreed with experimental data under various loading paths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.