Abstract
Abstract Stress-control fatigue tests have been conducted on a copper alloy at room temperature with and without mean stress. Ratcheting strain was measured to failure under four sets of stress amplitude and mean stress. The ratcheting strain versus cycle curve is similar to the conventional creep curve under static load consisting of primary, steady-state and tertiary stages. The steady-state rate and ratcheting strain at failure increase with mean stress for a given stress amplitude and with stress amplitude for a given mean stress. Ratcheting strain increases as the stress rate decreases. The S–N curve approach and mean stress models of Smith–Watson–Topper and Walker yielded good correlation of fatigue lives in the life range of 102–105 cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.