Abstract

We consider a disk-like Janus particle self-driven by a force of constant magnitude f, but an arbitrary direction depending on the stochastic rotation of the disk. The particle diffuses in a two-dimensional channel of varying width 2h(x). We applied the procedure mapping the 2+1-dimensional Fokker-Planck equationonto the longitudinal coordinate x; the result is the Fick-Jacobs equationextended by the spatially dependent effective diffusion constant D(x) and an additional effective potential -γ(x), derived recursively within the mapping procedure. Unlike the entropic potential ∼lnh(x), γ(x) becomes an increasing or decreasing function also in periodic channels, depending on the asymmetry of h(x) and thus it visualizes the net force driving the ratchet current. We demonstrate the appearance of the ratchet effect on a trial asymmetric channel; our theory is verified by a numerical solution of the corresponding Fokker-Planck equation. Isotropic driving force f results in the monotonic decrease of the ratchet current with a growing ratio α=D_{R}/D_{T} of the rotation and the translation diffusion constants; asymptotically going ∼1/α^{2}. If we allow anisotropy of the force, we can observe the current reversal depending on α.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call