Abstract

We show in simulations that overdamped interacting particles in two dimensions with a randomly disordered substrate can exhibit novel nonequilibrium transport phenomena including a transverse ratchet effect, where a combined dc drive and circular ac drive produce a drift velocity in the direction transverse to the applied dc drive. The random disorder does not break any global symmetry; however, in two dimensions, symmetry breaking occurs due to the chirality of the circular drive. In addition to inducing the transverse ratchet effect, increasing the ac amplitude also strongly affects the longitudinal velocity response and can produce what we term an overshoot effect where the longitudinal dc velocity is higher in the presence of the ac drive than it would be for a dc drive alone. We also find a dynamical reordering transition upon increasing the ac amplitude. In the absence of a dc drive, it is possible to obtain a ratchet effect when the combined ac drives produce particle orbits that break a reflection symmetry. In this case, as the ac amplitude increases, current reversals can occur. These effects may be observable for vortices in type-II superconductors as well as for colloids interacting with random substrates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.