Abstract

The radiobiological effect of intracellularly localised radionuclides emitting low energy electrons (Auger electrons) has received much attention. Most in vivo studies reported have been performed in the mouse testis. We have investigated the rat testis as an in vivo radiobiological model, with sperm-head survival, testis weight loss and also alteration in the blood plasma hormone levels of FSH and LH as radiobiological endpoints. Validation of the rat testis model was evaluated by using mean absorbed doses of up to 10 Gy from intratesticularly (i.t.) injected (111)In oxine or local X-ray irradiation. Biokinetics of the i.t. injected radionuclide was analysed by scintillation camera imaging and used in the absorbed dose estimation. By the analysis of the autoradiographs, the activity distribution was revealed. Cell fractionation showed (111)In to be mainly associated with the cell nuclei. External irradiations were monitored by thermoluminescence dosimeters. The sperm-head survival was the most sensitive radiobiological parameter correlated to the mean absorbed dose, with a D(37) of 2.3 Gy for (111)In oxine and 1.3 Gy for X rays. The levels of plasma pituitary gonadal hormones FSH and LH were elevated for absorbed doses >7.7 Gy. This investigation shows that the radiobiological model based on the rat testis has several advantages compared with the previously commonly used mouse testis model. The model is appropriate for further investigations of basic phenomena such as radiation geometry, intracellular kinetics and heterogeneity, crucial for an understanding of the biological effect of low-energy electrons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.