Abstract
An interaction between the immune and endocrine systems has been long known. This association is further strengthened by the finding that splenic lymphocytes have the capacity to produce molecules similar to if not the same as classical hormones, including several members of the opiate family, PRL, GH, and neuropeptide Y. Because of such findings and because of information from other laboratories suggesting that LHRH might have direct effects upon the immune system, we hypothesized that immune cells themselves might contain LHRH. Lymphocytes were purified from spleens of intact adult male Sprague-Dawley rats and the cells were lysed with sodium hydroxide. The concentration of immunoreactive LHRH was 403 +/- 184 pg/20 X 10(6) lymphocytes. Increasing amounts of lymphocyte lysate displaced [125-I]LHRH from LHRH antibody in a manner parallel to that produced by synthetic hypothalamic LHRH, suggesting immunologic similarity between lymphocyte and hypothalamic LHRH. Lymphocyte LHRH-like immunoactivity coeluted from Nova-Pak C18 columns with synthetic hypothalamic LHRH. When lymphocyte lysates were applied to rat anterior pituitary cells in monolayer culture, significant stimulation of LHRH secretion was seen, from 2,144 +/- 54 pg LH/ml.4 h to 15,364 +/- 587 pg LH/ml.4 h (P less than 0.001), a finding verified in five additional experiments. In other studies, this LH response evoked by lymphocyte lysates was found to be dose dependent and could be significantly inhibited by an LHRH-antagonist. Furthermore, when lymphocyte lysate and identically treated synthetic LHRH were HPLC fractionated, there was coelution of lysate and hypothalamic LHRH bioactivity. The lysate itself contained no substantial LH immunoreactivity. Thus, lymphocytes from spleens of adult male rats contain an immunoactive and bioactive LHRH, a finding further strengthening an association between the endocrine and immune systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.