Abstract

Defensins constitute a family of 3- to 4-kDa antimicrobial peptides that are stored in the cytoplasmic granules of neutrophils, some macrophages, and intestinal Paneth cells. We have assessed defensin gene expression during myeloid differentiation by first characterizing cDNAs for each of the four known rat neutrophil defensins (RatNP 1-4). The cDNA sequences revealed that the peptides are synthesized as 87-94 amino acid precursors, each containing signal, pro-, and mature peptide segments. RatNP-3 and -4 mRNAs, but not those for RatNP-1 and -2 or other myeloid defensins, contained unique polypurine tracts located close to the termination codon in the 3' untranslated region. By using cDNA probes and/or riboprobes, we evaluated defensin transcript levels in a variety of tissues and in the full spectrum of neutrophil precursors. By in situ hybridization, defensin mRNAs were localized to neutrophil precursors in the bone marrow, with the highest mRNA levels occurring in promyelocytes and somewhat lower signals occurring in myeloblasts and myelocytes. Defensin mRNAs were not detectable in bands or mature neutrophils, nor at significant levels in tissues other than bone marrow. The accumulation of defensin protein in bone marrow cells was assessed by immunohistochemical staining with anti-RatNP-1 Ab. RatNP 1-4 mRNAs and protein levels were then correlated for each stage of neutrophilic differentiation to reveal the maturational profile of myeloid defensin gene expression in the rat.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.