Abstract

Continuous exposure of rats to low concentrations of ozone has previously been associated with enhanced metabolic enzyme activities, when measured in lung homogenates. In this study, metabolic rates were measured in intact perfused lungs with altered pathology brought about by 3 days continuous exposure to 0.6 ppm ozone. Increased metabolism of ozone-exposed lungs was indicated by a twofold enhancement in glucose utilization, associated with a 62% increase in lactate formation and a 166% increase in the rate of 14CO2 production from D-[U-14C]glucose from control values of 5.2 +/- 0.5 mumol lactate and 4.4 +/- 0.6 mumol 14CO2/h per lung (+/- SE, n = 4), respectively. Mitochondrial metabolism was separately assessed by measurements of 14CO2 production from [U-14C]-pyruvate, which was found not to be significantly altered by ozone exposure, although homogenate oxygen uptake in the presence of succinate was significantly enhanced by 57%. These changes in intermediary metabolism could be correlated with increased glucose carbon incorporation into lipid and elevated activity of glucose-6-phosphate dehydrogenase. The observed elevated metabolic rates were consistent with the energy and synthetic needs of a lung during repair of ozone-induced damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.