Abstract

Carbonic anhydrase activity in rat lungs perfused free of blood was localized by homogenization of the tissue followed by differential centrifugation. Four fractions were obtained from the homogenate, a cell debris pellet with a mitochondrial pellet and a microsomal pellet with a clear cytosol supernatant. The last named fraction contained 67% of the total enzyme activity; the cell debris contained 18%, and the mitochondrial and microsomal contained 8 and 7%, respectively. Of the 33% of enzyme activity associated with the pellet fraction, 25% could be experimentally defined as membrane associated by its solubilization with 0.3 M tris-(hydroxymethyl) aminoethane sulfate buffer. The remainder was defined as membrane bound. Purification of the soluble carbonic anhydrase from the lung yielded two isozymes with electrophoretic and inhibitor sensitivities apparently identical with the blood isozymes. Hemoglobin analysis showed that the lung isozymes could not have included more than 0.03% enzyme from blood contamination. The carbonic anhydrase activity present in the whole rat lung would give an average acceleration of the CO2 hydration reaction under physiological conditions over the uncatalyzed rate of 122, sufficient to maintain equilibration between CO2 and plasma HCO3- during blood transit of the lung. If the membrane-associated activity is mostly on the plasma membrane of the endothelial cells and available to the capillary blood, it would be sufficient to give this acceleration. We suggest that the possible source of this membrane-associated activity might be adsorption from the blood of carbonic anhydrase liberated by erythrocyte lysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.