Abstract

Studies were conducted to explore relationships in rat liver between retinyl palmitate hydrolase activity and the hydrolytic activities against cholesteryl oleate and triolein. Previous studies have shown positive correlations between these three lipid ester hydrolase activities. In order to extend this work, the hydrolase activities were further purified and characterized. The activities against cholesteryl oleate and triolein resembled retinyl palmitate hydrolase activity in showing great variability from rat to rat as assayed in vitro. The relative levels of the three activities were highly correlated with each other over a 50-fold range of activity in a series of 66 liver homogenates. Partial purification (approx. 200-fold) in the absence of detergents was achieved by sequential chromatography of an acetone powder extract of liver on columns of phenyl-Sepharose, DEAE-Sepharose and heparin-Sepharose. The three hydrolase activities copurified during each of these Chromatographic steps. The properties of the three copurifying activities were similar with regard to stimulation of activity by trihydroxy bile salts, pH optimum (near 8.0), and observance of Michaelis-Menten-type saturation kinetics. The three activities were different in their sensitivity towards the serine esterase inhibitors diisopropylfluorophosphate and phenylmethanesulfonyl fluoride, and in their solubility properties in 10 mM sodium acetate, pH 5.0. Thus, triolein hydrolase activity was much less sensitive than the other two activities to the two inhibitors. In addition, the activity against cholesteryl oleate could be separated from the other two activities by extraction of an acetone powder with acetate buffer, pH 5.0. These results indicate that the three lipid hydrolase activities are due to at least three different catalytically active centers, and at least two distinct and separable enzymes. It is likely that three separate but similar enzymes, that appear to be coordinately regulated, are involved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.