Abstract

As part of our ongoing studies to characterize the catalytic pathway(s) for the monoamine oxidase and cytochrome P450 catalyzed oxidations of 1,4-disubstituted 1,2,3,6-tetrahydropyridinyl derivatives, we have examined the metabolic fate of 4-phenyl- trans-1-(2-phenylcyclopropyl)-1,2,3,6-tetrahydropyridine in NADPH supplemented rat liver microsomes. Three metabolic pathways have been identified: (1) allylic ring α-carbon oxidation to yield the dihydropyridinium species, (2) nitrogen oxidation to yield the N-oxide and (3) N-dealkylation to yield 4-phenyl-1,2,3,6-tetrahydropyridine and cinnamaldehyde. A possible mechanism to account for the formation of cinnamaldehye involves an initial single electron transfer from the nitrogen lone pair to the iron oxo system Fe +3(O) to form the corresponding cyclopropylaminyl radical cation that will be processed further to the final products. The reaction pathway leading to the dihydropyridinium metabolite may also proceed via the same radical cation intermediate but direct experimental evidence to this effect remains to be obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.