Abstract
After denaturation in 0.6 m guanidine hydrochloride, rat brain hexokinase becomes highly susceptible to proteolysis by trypsin. Glucose 6-phosphate (Glc-6-P) and its analog, 1,5-anhydroglucitol 6-phosphate, selectively protect the N-terminal half of the molecule from proteolysis. These compounds do not protect the C-terminal half of the molecule, nor do they protect enzyme activity; the Glc analog, N-acetylglucosamine, does protect the C-terminal domain and catalytic activity, but does not prevent proteolysis of the N-terminal half of the molecule. These results are consistent with previous work [ M. Nemat-Gorgani and J. E. Wilson (1986) Arch. Biochem. Biophys. 251, 97–103 ; D. M. Schirch and J. E. Wilson (1987) Arch. Biochem. Biophys. 254, 385–396 ] demonstrating that binding sites for both hexose and nucleotide substrates, and thus catalytic function, are associated with a 40-kDa domain located at the C-terminus of the enzyme. They further demonstrate that the binding site for the allosteric effector, Glc-6-P, lies in the N-terminal half of the molecule and is distinct from the catalytic site. Using protection against proteolysis as a reflection of binding, it is shown that the Glc-6-P binding site in the N-terminal region has all the characteristics described for the allosteric effector site on this enzyme in terms of affinity for Glc-6-P, specificity, and synergistic interactions with the hexose binding site in the C-terminal region of the molecule. This disposition of catalytic and regulatory functions in discrete halves of the molecule is consistent with suggestions by several investigators that mammalian hexokinases evolved by a process of duplication and fusion of an ancestral gene coding for a hexokinase similar to the present-day yeast enzyme, with the regulatory site of mammalian hexokinases having evolved from what was originally a catalytic site.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.