Abstract
Caffeine has been reported to have a positive and (or) a negative inotropic effect on cardiac muscle. In this study, the force-frequency and postrest characteristics of rat atrium were studied in the presence of caffeine (1.0-10 mM) to see if the interval between beats affected the response of cardiac muscle to caffeine. When stimulation frequency was 0.5 or 2.0 Hz, there was a positive followed by a negative inotropic response with 1, 5, or 10 mM caffeine. Incomplete relaxation occurred under these circumstances, giving rise to contracture. At low frequency of stimulation (0.1 Hz) caffeine had only a negative inotropic effect, and this effect was greater with 1 mM caffeine than with 5 mM caffeine. In the absence of caffeine, when stimulation at 0.5 or 3 Hz was interrupted, a pause of 2-20 s resulted in potentiation. When caffeine was present (2.0 mM), postrest potentiation was severely attenuated, but the steady-state contraction amplitude within the range 0.5-3.0 Hz was not different. These results are consistent with the hypothesis that caffeine induces a leak of Ca2+ from the sarcoplasmic reticulum, and this Ca2+ is extruded from the cell, possibly by Na+/Ca2+ exchange. Sarcoplasmic reticular uptake of Ca2+ and the translocation to release sites appear not to be affected by caffeine within 1-5 mM concentrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.