Abstract

Sponges (Porifera) are the simplest and the most ancient metazoan animals, which branched off first from the common ancestor of all multicellular animals. We have inspected approximately 13,000 partial cDNA sequences (ESTs) from the marine sponge Suberites domuncula and have identified full or partial cDNA sequences coding for approximately 50 different Ras-like small GTPases. Forty-four sponge proteins from the Ras family are described here: 6 proteins from the Ras subfamily, 5 from Rho, 6 from Arf, 1 Ran, and 26 Rabs or Rab-like proteins. No isoforms of these proteins were detected; the closest related proteins are two Rho proteins with 74% identity. Small GTPases from sponge display a higher degree of sequence conservation with orthologues from vertebrates (53%-93% identity) than with those from either Caenorhabditis elegans or Drosophila melanogaster. The real number of small GTPases in this sponge is certainly much higher than 50, because the actual S. domuncula database of approximately 13,000 ESTs contains at most 3000 nonredundant cDNA sequences. The number of genes for Ras-like small GTPases in yeast, C. elegans, D. melanogaster, and humans is 30, 56, 90, and 174, respectively. Both model invertebrates have only 29 Rabs or Rab-like proteins, compared with 26 already found in sponge, and are missing at least 1 Rab (Rab24) present in S. domuncula and mammals. Our results indicate that duplications and diversifications of genes encoding Ras-like small GTPases, especially the Rab subfamily of small GTPases, happened very early in the evolution of Metazoa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call