Abstract

Van der Waals materials are attracting great attention in the field of spintronics due to their novel physical properties. For example, they are utilized as spin-current generating materials in spin-orbit torque (SOT) devices, which offers an electrical way to control the magnetic state and is promising for future low-power electronics. However, SOTs have mostly been demonstrated in vdW materials with strong spin-orbit coupling (SOC). Here, the observation of a current-induced SOT in the h-BN/SrRuO3 bilayer structure is reported, where the vdW material (h-BN) is an insulator with negligible SOC. Importantly, this SOT is strong enough to induce the switching of the perpendicular magnetization in SrRuO3 . First-principles calculations suggest a giant Rashba effect at the interface between vdW material and SrRuO3 (110)pc thin film, which leads to the observed SOT based on a simplified tight-binding model. Furthermore, it is demonstrated that the current-induced magnetization switching can be modulated by the electric field. This study paves the way for exploring the current-induced SOT and magnetization switching by integrating vdW materials with ferromagnets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call