Abstract

ABSTRACTThe aim of this study was to investigate the brain targeting potential of rasagiline-encapsulated chitosan-coated PLGA nanoparticles (RSG-CS-PLGA-NPs) delivered intranasally into the brain. Chitosan-coated PLGA nanoparticles (RSG-CS-PLGA-NPs) were developed through double emulsification-solvent evaporation technique. RSG-CS-PLGA-NPs were characterized for particle size, zeta potential, size distribution, encapsulation efficiency, and in vitro drug release. The mean particle size, polydispersity index, and encapsulation efficiency were found to be 122.38 ± 3.64, 0.212 ± 0.009, and 75.83 ± 3.76, respectively. High-performance liquid chromatography–mass spectroscopy and mass spectroscopy study showed a significantly high mucoadhesive potential of RSG-CS-PLGA-NPs and least for conventional and homogenized nanoformulation. Pharmacokinetic results of RSG-CS-PLGA-NPs in Wistar rat brain and plasma showed a significantly high (**p < 0.005) AUC0-24 and amplified Cmax over intravenous treatment group. Finally, the investigation demonstrated that intranasal delivery of mucoadhesive nanocarrier showed significant enhancement of bioavailability in brain, after administration of the RSG-CS-PLGA-NPs which could be a substantial achievement of direct nose to brain targeting in Parkinson’s disease therapy and related brain disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.