Abstract

Retinoic acid (RA) has broad clinical applications for the treatment of various cancers, particularly acute promyelocytic leukemia. However, RA-based therapy is limited by relapse in patients associated with RA resistance, the mechanism of which is poorly understood. Here, we suggest a new molecular mechanism of RA resistance by a repressor, named RA resistance factor (RaRF). RaRF suppressed transcriptional activity of the RA receptor (RAR) by directly interacting with and sequestering RAR to the nucleolus in response to RA. RaRF was highly expressed in RA-resistant leukemia cells and its expression was strongly correlated with RA sensitivity. MCL1 was upregulated by RA treatment upon RaRF depletion, accompanying leukemic myeloblast differentiation, which is negatively regulated by ectopic RaRF expression. Collectively, we propose that RaRF may be a factor in the resistance mechanism and thus a potential target for leukemia therapy using RA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call