Abstract

Networks and dynamical processes occurring on them have become a paradigmatic representation of complex systems. Studying the role of quenched disorder, both intrinsic to nodes and topological, is a key challenge. With this in mind, here we analyze the contact process (i.e., the simplest model for propagation phenomena) with node-dependent infection rates (i.e., intrinsic quenched disorder) on complex networks. We find Griffiths phases and other rare-region effects, leading rather generically to anomalously slow (algebraic, logarithmic, etc.) relaxation, on Erdős-Rényi networks. We predict similar effects to exist for other topologies as long as a nonvanishing percolation threshold exists. More strikingly, we find that Griffiths phases can also emerge--even with constant epidemic rates--as a consequence of mere topological heterogeneity. In particular, we find Griffiths phases in finite-dimensional networks as, for instance, a family of generalized small-world networks. These results have a broad spectrum of implications for propagation phenomena and other dynamical processes on networks, and are relevant for the analysis of both models and empirical data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.