Abstract

In this paper, we investigate the effects of convective heat transfer on the argon gas flow through micro/nanochannels subject to uniform wall heat flux (UWH) boundary condition using the direct simulation Monte Carlo (DSMC) method. Both the hot wall (qwall> 0) and the cold wall (qwall< 0) cases are considered. We consider the effect of wall heat flux on the centerline pressure, velocity profile and mass flow rate through the channel in the slip regime. The effects of rarefaction, property variations and compressibility are considered. We show that UWH boundary condition leads to the thermal transpiration. Our investigations showed that this thermal transpiration enhances the heat transfer rate at the walls in the case of hot walls and decreases it where the walls are being cooled. We also show that the deviation of the centerline pressure distribution from the linear distribution depends on the direction of the wall heat flux.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.