Abstract

During the past decade considerable efforts have been exerted for the simulation of rarefied gas flows in a wide range of applications, like the flow over suborbital vehicles, in microelectromechanical systems, etc. Such flows appear to be significantly different from those at the continuum regime, making the Navier-Stokes equations to fail without further amendment. In this study an in-house academic CFD solver, named Galatea, is modified appropriately to account for rarefied gases. The no-slip condition on solid walls is no longer valid, hence, velocity slip and temperature jump boundary conditions are applied instead. Additionally, a second-order accurate slip model has been incorporated, namely, this of Beskok and Karniadakis, increasing the accuracy in the same area but avoiding simultaneously the numerical difficulties, entailed by the computation of the second derivative of slip velocity when complex geometries and unstructured grids are coupled. The proposed solver is validated against rarefied laminar flow over a suborbital shuttle, designed by the Azim’UTBM team. The obtained results are compared with those extracted with the parallel open-source kernel SPARTA, which is based on the DSMC method. A satisfactory agreement is reported between the two methodologies, demonstrating the potential of the modified solver to simulate effectively such flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.