Abstract

In the present work, a detailed Raman spectroscopy investigation on the single-walled carbon nanotubes (SWCNTs) filled with praseodymium chloride, terbium chloride and thulium chloride was performed. The salts were incorporated inside the SWCNTs by a capillary filling method using melts, and the high-resolution transmission electron microscopy data proved the high filling degree of the nanotube channels. A thorough analysis of the radial breathing mode and G-band of the Raman spectra of the pristine and filled SWCNTs showed that the encapsulated salts cause acceptor doping of the host nanotubes, and the doping efficiency depends on the compound. The incorporated thulium chloride has the strongest doping effect on the SWCNTs, whereas praseodymium chloride has the weakest effect. It was found that the encapsulated salts modify more significantly the electronic structure of metallic nanotubes than semiconducting SWCNTs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call