Abstract

The proportion of genetic variation in complex traits explained by rare variants is a key question for genomic prediction, and for identifying the basis of “missing heritability”–the proportion of additive genetic variation not captured by common variants on SNP arrays. Sequence variants in transcript and regulatory regions from 429 sequenced animals were used to impute high density SNP genotypes of 3311 Holstein sires to sequence. There were 675,062 common variants (MAF>0.05), 102,549 uncommon variants (0.01<MAF<0.05), and 83,856 rare variants (MAF<0.01). We describe a novel method for estimating the proportion of the rare variants that are sequencing errors using parent-progeny duos. We then used mixed model methodology to estimate the proportion of variance captured by these different classes of variants for fat, milk and protein yields, as well as for fertility. Common sequence variants captured 83%, 77%, 76% and 84% of the total genetic variance for fat, milk, and protein yields and fertility, respectively. This was between 2 and 5% more variance than that captured from 600k SNPs on a high density chip, although the difference was not significant. Rare variants captured 3%, 0%, 1% and 14% of the genetic variance for fat, milk and protein yields, and fertility respectively, whereas pedigree explained the remaining amount of genetic variance (none for fertility). The proportion of variation explained by rare variants is likely to be under-estimated due to reduced accuracies of imputation for this class of variants. Using common sequence variants slightly improved accuracy of genomic predictions for fat and milk yield, compared to high density SNP array genotypes. However, including rare variants from transcript regions did not increase the accuracy of genomic predictions. These results suggest that rare variants recover a small percentage of the missing heritability for complex traits, however very large reference sets will be required to exploit this to improve the accuracy of genomic predictions. Our results do suggest the contribution of rare variants to genetic variation may be greater for fitness traits.

Highlights

  • Genome-wide common variants from large scale single nucleotide polymorphism (SNP) genotyping have been used successfully in the last decade to map associated mutations in genome wide association studies (GWAS), and predict future phenotypes for complex traits with genomic prediction

  • The aim of this study was to test whether the hypothesis that sequence variants from coding and potentially regulatory regions, including rare variants can account for the missing heritability previously reported, and to estimate to what extent they can contribute to increasing the predictive ability of genomic selection

  • A data set of 3311 Holstein sires, genotyped with either the Bovine SNP50k SNP array or Bovine HD 777k SNP array were imputed to sequence variant genotypes using the Holstein and Jersey animals with whole genome sequence (WGS) data from the 1000 Bull Genomes Project [12], using Beagle3.3 [19]

Read more

Summary

Introduction

Genome-wide common variants from large scale single nucleotide polymorphism (SNP) genotyping have been used successfully in the last decade to map associated mutations in genome wide association studies (GWAS), and predict future phenotypes for complex traits with genomic prediction. Polymorphisms reaching genome wide significance in GWAS do not explain all of the heritability of complex traits (as reviewed by Manolio et al, [1]). While substantially more genetic variance is captured using all markers simultaneously [2], [3], a proportion of the genetic variance is still not captured by the SNP on widely used arrays. A joint analyses of 295k common SNPs only explained 45% of the pedigree heritability in human height [2]. The proportion of genetic variance captured can be considerably less—Lee et al, [4] reported that 23% of the variation in liability to schizophrenia was captured by SNPs on a high density array. Jensen et al, [5], Haile-Mariam et al.,

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call