Abstract

AmpC beta-lactamases cause resistance to third-generation cephalosporins, including beta-lactamase inhibitors. In Escherichia coli from the German food production chain, the majority of AmpC beta-lactamase activity can be attributed to plasmid-mediated CMY-2 or overproduction of chromosomal AmpC beta-lactamase, but occasionally other enzymes like DHA-1 are involved. This study investigated the prevalence of the AmpC beta-lactamase DHA-1 in ESBL/AmpC-producing E. coli (n = 4706) collected between 2016 and 2021 as part of a German antimicrobial resistance monitoring program along the food chain. Eight isolates (prevalence < 0.2%) were detected and further characterized by PFGE, transformation and conjugation experiments as well as short-read and long-read sequencing. All eight strains harbored blaDHA-1 together with qnrB4, sul1 and mph(A) resistance genes on an IS26 composite transposon on self-transferable IncFII or IncFIA/FIB/II plasmids. During laboratory experiments, activation of the translocatable unit of IS26-bound structures was observed. This was shown by the variability of plasmid sizes in original isolates, transconjugants or transferred plasmids, and correspondingly, duplications of resistance fragments were found in long-read sequencing. This activation could be artificial due to laboratory handling or naturally occurring. Nevertheless, DHA-1 is a rare AmpC beta-lactamase in livestock and food in Germany, and its dissemination will be monitored in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call