Abstract

IntroductionThe MRE11A-RAD50-Nibrin (MRN) complex plays several critical roles related to repair of DNA double-strand breaks. Inherited mutations in the three components predispose to genetic instability disorders and the MRN genes have been implicated in breast cancer susceptibility, but the underlying data are not entirely convincing. Here, we address two related questions: (1) are some rare MRN variants intermediate-risk breast cancer susceptibility alleles, and if so (2) do the MRN genes follow a BRCA1/BRCA2 pattern wherein most susceptibility alleles are protein-truncating variants, or do they follow an ATM/CHEK2 pattern wherein half or more of the susceptibility alleles are missense substitutions?MethodsUsing high-resolution melt curve analysis followed by Sanger sequencing, we mutation screened the coding exons and proximal splice junction regions of the MRN genes in 1,313 early-onset breast cancer cases and 1,123 population controls. Rare variants in the three genes were pooled using bioinformatics methods similar to those previously applied to ATM, BRCA1, BRCA2, and CHEK2, and then assessed by logistic regression.ResultsRe-analysis of our ATM, BRCA1, and BRCA2 mutation screening data revealed that these genes do not harbor pathogenic alleles (other than modest-risk SNPs) with minor allele frequencies >0.1% in Caucasian Americans, African Americans, or East Asians. Limiting our MRN analyses to variants with allele frequencies of <0.1% and combining protein-truncating variants, likely spliceogenic variants, and key functional domain rare missense substitutions, we found significant evidence that the MRN genes are indeed intermediate-risk breast cancer susceptibility genes (odds ratio (OR) = 2.88, P = 0.0090). Key domain missense substitutions were more frequent than the truncating variants (24 versus 12 observations) and conferred a slightly higher OR (3.07 versus 2.61) with a lower P value (0.029 versus 0.14).ConclusionsThese data establish that MRE11A, RAD50, and NBN are intermediate-risk breast cancer susceptibility genes. Like ATM and CHEK2, their spectrum of pathogenic variants includes a relatively high proportion of missense substitutions. However, the data neither establish whether variants in each of the three genes are best evaluated under the same analysis model nor achieve clinically actionable classification of individual variants observed in this study.

Highlights

  • The meiotic recombination 11 (MRE11A)-RAD50-Nibrin (MRN) complex plays several critical roles related to repair of whole-genome amplified deoxyribonucleic acid (DNA) double-strand breaks

  • The data neither establish whether variants in each of the three genes are best evaluated under the same analysis model nor achieve clinically actionable classification of individual variants observed in this study

  • Based on Breast Cancer 1 gene (BRCA1) and Breast Cancer 2 gene (BRCA2) mutation screening data used previously to calibrate Align-GVGD [33,38], we found that rare variants that fall within the acceptor or donor region and reduce the MES score for the splice signal in which they fall show an approximately 95% probability to damage splice junction function when they result in a calibrated MES score of z < −2, or approximately 40% probability when they result in a calibrated MES score of −2 < z ≤ −1 [39]; Vallee et al, manuscript in preparation

Read more

Summary

Introduction

The MRE11A-RAD50-Nibrin (MRN) complex plays several critical roles related to repair of DNA double-strand breaks. The MRN complex, formed from dimers of the proteins encoded by MRE11A, RAD50, and NBN (MIMs 600814, 604040, and 602667), plays key roles in DNA double-strand break (DSB) repair, meiotic recombination, cell cycle checkpoints, and maintenance of telomeres [4]. Humans born with biallelic mutations in any one of the three genes share a cellular phenotype that includes sensitivity to ionizing radiation, a deficit in DNA DSB repair, and chromosomal instability (MIM 604391; MIM 251260) [8]. These people are at risk of severe cancer susceptibility phenotypes. While too few human biallelic RAD50 mutation carriers have been identified to reach a conclusion about their cancer susceptibility, more than 20% of mice homozygous for a hypomorphic Rad allele (Rad p.Lys22Met) that lived past age four months died with lymphoma or leukemia [12]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call