Abstract

Most primary severe hypertriglyceridemias (HTGs) are diagnosed in adults, but their molecular foundations have not been completely elucidated. We aimed to identify rare dysfunctional mutations in genes encoding regulators of lipoprotein lipase (LPL) function in patients with familial and non-familial primary HTG. We sequenced promoters, exons, and exon-intron boundaries of LPL, APOA5, LMF1, and GPIHBP1 in 118 patients with severe primary HTG (triglycerides >500mg/dL) and 53 normolipidemic controls. Variant functionality was analyzed using predictive software and functional assays for mutations in regulatory regions. We identified 29 rare variants, 10 of which had not been previously described: c.(-16A>G), c.(1018+2G>A), and p.(His80Arg) in LPL; p.(Arg143Alafs*57) in APOA5; p.(Val140Ile), p.(Leu235Ile), p.(Lys520*), and p.(Leu552Arg) in LMF1; and c.(-83G>A) and c.(-192A>G) in GPIHBP1. The c.(1018+2G>A) variant led to deletion of exon 6 in LPL cDNA, whereas the c.(-16A>G) analysis showed differences in the affinity for nuclear proteins. Overall, 20 (17.0%) of the patients carried at least one allele with a rare pathogenic variant in LPL, APOA5, LMF1, or GPIHBP1. The presence of a rare pathogenic variant was not associated with lipid values, family history of HTG, clinical diagnosis, or previous pancreatitis. Less than one in five subjects with triglycerides >500mg/dL and no major secondary cause for HTG may carry a rare pathogenic mutation in LPL, APOA5, LMF1, or GPIHBP1. The presence of a rare pathogenic variant is not associated with a differential phenotype.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call