Abstract
Classical extreme-value theory for stationary sequences of random variables can up to a large extent be paraphrased as the study of exceedances over a high threshold. A special role within the description of the temporal dependence between such exceedances is played by the extremal index. Parts of this theory can be generalized not only to random variables on an arbitrary state space hitting certain failure sets but even to a triangular array of rare events on an abstract probability space.In the case of M4 processes, or maxima of multivariate moving maxima, the arguments take a simple and direct form.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.