Abstract

YbMgGaO4, a structurally perfect two-dimensional triangular lattice with an odd number of electrons per unit cell and spin-orbit entangled effective spin-1/2 local moments for the Yb(3+) ions, is likely to experimentally realize the quantum spin liquid ground state. We report the first experimental characterization of single-crystal YbMgGaO4 samples. Because of the spin-orbit entanglement, the interaction between the neighboring Yb(3+) moments depends on the bond orientations and is highly anisotropic in the spin space. We carry out thermodynamic and the electron spin resonance measurements to confirm the anisotropic nature of the spin interaction as well as to quantitatively determine the couplings. Our result is a first step towards the theoretical understanding of the possible quantum spin liquid ground state in this system and sheds new light on the search for quantum spin liquids in strong spin-orbit coupled insulators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.