Abstract

The hardening mechanisms are studied in the cast high-temperature next-generation materials that are based on the intermetallic compound Ni3Al and are low alloyed with refractory (W, Re, Mo, Cr) and reaction- and surface-active (REM, Ti, etc.) metals. The interaction of the main impurities (C, O, Si, S) with three characteristic representatives of the REM group (namely, Y, La, Ce), which can be used for alloying, is analyzed. The reported data on the behavior of some REMs in the alloys based on nickel monoaluminide NiAl are considered. The effect of the REMs on the phase compositions of real multicomponent semicommercial Ni3Al-based VKNA alloys produced by directional solidification is investigated, and the excess phases precipitating upon alloying are revealed. Alloying with refractory metals and REMs is shown to lead to the formation of nanophases that stabilize the dendritic or single-crystal structure of VKNA-type cast alloys and strengthen the interface boundaries in them.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.