Abstract

2,6-diisopropyl-N-(2-thienylmethyl)aniline (H2L) has been prepared, which reacted with equimolar rare earth metal tris(alkyl)s, Ln(CH2SiMe3)3(THF)2, afforded rare earth metal mono(alkyl) complexes, LLn(CH2SiMe3)(THF)3 (:Ln=Lu; :Ln=Y). In this process, H2L was deprotonated by one metal alkyl species followed by intramolecular C-H activation of the thiophene ring to generate dianionic species L2- with the release of two tetramethylsilane. The resulting L2- combined with three THF molecules and an alkyl unit coordinates to Y3+ and Lu3+ ions, respectively, in a rare N,C-bidentate mode, to generate distorted octahedron geometry ligand core. Whereas, with treatment of H2L with equimolar Sc(CH2SiMe3)3(THF)2, a heteroleptic complex (HL)(L)Sc(THF) () was isolated as the main product, where the dianionic L2- species bonds to Sc3+ via chelating N,C atoms whilst the monoanionic HL connects to Sc3+ in an S,N-bidentate mode. All complexes have been characterized by NMR spectroscopy and X-ray diffraction analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.