Abstract

Strain-mediated interaction between phonons and telecom photons is demonstrated using excited states of erbium ions embedded in a mechanical resonator. Owing to the extremely long-lived nature of rare-earth ions, the dissipation rate of the optical resonance falls below that of the mechanical one. Thus, a "reversed dissipation regime" is achieved in the optical frequency region. We experimentally demonstrate an optomechanical coupling rate g_{0}=2π×21.7 Hz, and numerically reveal that the interaction causes stimulated excitation of erbium ions. Numerical analyses further indicate the possibility of g_{0} exceeding the dissipation rates of erbium and mechanical systems, thereby leading to single-photon strong coupling. This strain-mediated interaction, moreover, involves the spin degree of freedom, and has a potential to be extended to highly coherent opto-electro-mechanical hybrid systems in the reversed dissipation regime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call