Abstract

Rare earth ion contribution in barium hexaferrite structure to a change of magneto-crystalline anisotropy to improving its magnetic properties has been investigated. A series of simples of Ba1-xCexFe12O19 with the variation of x (x = 0.0-0.5) were prepared by solid-state reactions using mechanical deformation techniques. The oxide materials used for sample preparation are BaCO3, Fe2O3, and CeO2 with the ratio of material used is adjusted to the stoichiometric calculation for variations of Ce4+ substitution. The phase identification results show that the reaction took place perfectly and successfully formed a single-phase Ba1-xCexFe12O19 namely at the composition x = 0 and x = 0.1. while for the composition x> 0.1, it is formed in three phases. Particle morphology in the composition x = 0 and x = 0.1 has very good and uniform particle homogeneity across the surface of the sample in the form of polygonal particles. So the substitution of Ce atoms into the barium hexaferrite structure is only able at the composition limit x = 0.1. In the composition x = 0.1 has been able to increase the coercivity and magnetization fields. It can be concluded that the permanent magnet with the composition Ba0,9Ce0.1F12O19 gives the best results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call